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Abstract — A new way of detecting R-wave in QRS complex of
electrocardiogram (ECG) based on higher-order statistics
(HOS) is presented in this paper. The proposed method employs
HOS-based parameters, such as skewness and kurtosis, in order
to formulate an adaptive detector of R peak with high accuracy.
Experimental results, when applying the proposed method to
pre-classified ECG data from the Massachusetts Institute of
Technology/Beth Israel Hospital (MIT/BIH) ECG database,
prove that the proposed method exhibits over 99% of
detectability, even when the ECG data are contaminated with
noise. Due to its simplicity it could be feasible in a real-time
context and it could be applied in routine ambulatory and/or
clinical heart rate screening.

Keywords — Massachusetts Institute of Technology/Beth Israel
Hospital (MIT/BIH) ECG database, QRS complex, skewness,
kurtosis, adaptive robust detector, heart rate screening.

I. INTRODUCTION

NE of the difficult tasks in the analysis of electro-

cardiogram (ECG) signal is the accurate detection of the
R-wave in the QRS complex. This is due to the difficulties
imposed by the time-varying morphology of ECG, the
physiological variations due to the patient and the noise
contamination. The latter includes power line interface,
muscle contraction noise, poor electrode contact, patient
movement, and baseline wandering due to respiration [1].

In most QRS detectors, the ECG signal is first bandpass
filtered to reduce noise and differentiated to emphasize the
large slope of R-wave. Then, a short-time energy detector is
developed wusing a sliding analysis window [2].
Unfortunately, these detectors do not accurately account for
the inherent time-varying morphology of the QRS complex.
In order to overcome this problem, an adaptive technique that
captures the variations in QRS is introduced in this paper,
based on higher-order statistics (HOS) [3]. The property of
HOS to be zero for Gaussian signals and exhibit high values
for transient non-Gaussian ones provides the motivation for
our approach. In particular, adaptive thresholds structured on
the variation of skewness and kurtosis parameters when the
QRS complex is present provide the necessary information,
regarding the location of R-wave, resulting in accurate
estimates. Tests of the algorithm on the Massachusetts
Institute of Technology/Beth Israel Hospital (MIT/BIH) ECG
database [4], prove its high performance, even in the presence
of noise.

II. HOS PARAMETERS: SKEWNESS & KURTOSIS

If {X(k)}, k=0,£1,£2,...is a real stationary random
process and its moments up to 7 order exists they could be
written as

M (T, Ty, )=
E{X(k)-X(k+7)X(k+7,,)}, (D)
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and, due to stationarity, they depend only on the time
differences  7,,7,,...,7, ,7, =0,x1,... for all i
E{-} denotes the expected value. For n=3,4and by
putting 7, =7, =7, = 0 (assuming that m =0), the

skewness ]/; and kurtosis J, are given by [3]:

X 3
s = E{X (b)), )
x 4 2 2

ys = EXX7 (k) =3[E{X (D] )
In  practice, real

X(k),k=1,...N, y;and y;, could be estimated by

2 (x(i) =)’

for a stationary  signal

A

== 4
N
Z(x(i)—n%)“
?4=W—3, (5)

where, m and O are the estimated mean value and standard
deviation of X (k), respectively.

When the X (k) signal includes transients with high
amplitude its distribution shifts to a non-Gaussian one.
Consequently, skewness and kurtosis exhibit high values,
since they express the symmetry and the heaviness of the tail
of the distribution, respectively. In this way, skewness and
kurtosis could be used as indices of the presence or not of a

transient in the X (k) signal.

III. DESCRIPTION OF THE ALGORITHM

Motivated by the abovementioned property of skewness
and kurtosis we designed our approach. The block diagram of
the proposed algorithm, namely HOS-based R-Wave
Detector (HOS-RWD), is depicted in Fig. 1. Initially, a signal
conditioning process takes place where amplitude
normalization and DC extraction, using a high pass filter (5"-
order Butterworth, cut-off frequency=3Hz) of the N-sampled
ECG signal x(k) are performed. Then, the length M (<<N)
of a sliding window along with the R-wave length, D, are set
in accordance to the sampling frequency, f;, as the integer
part of M=f,/3 and D=0.02- f;, respectively. In addition, initial
values of the thresholds used for the HOS parameters are also
selected. Next, x(k) is windowed with a 99% overlap

sliding window of M samples. At each window, }73 and

}7 4 are estimated using (4) and (5) and their values are located
at the end of the window. Then, the local maxima of the first
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Fig. 1. Block diagram of the HOS-RWD algorithm.

derivative of pjand y,are calculated indicating the
locations of possible R-wave. Subsequently, the values of
7yand 7,at the possible locations are compared with two

thresholds; in case they are smaller we slide the window by
one sample. If their values exceed the thresholds, the two
locations are compared each other and in case they differ the
location pointed out by kurtosis is preferred, since, unlike
third-order statistics, the fourth-order statistics are not equal
to zero for symmetrical distributed non Gaussian random
processes [3]. Then, the thresholds are updated using the

mean value of the last five maximum values of 7,and 7,,

respectively. After the estimation of the first R-wave, the
window skips D samples to the right and proceeds with the
next one until the end of the input data is reached.

An example of the aforementioned procedure when
applied on a 1600-sample ECG section from an archive from
the MIT/BIH ECG database (‘100.dat’) is shown in Fig. 2.

IV. IMPLEMENTATION

The whole analysis was implemented on an IBM-PC
(Pentium I1I/800 MHz) using the programming language

ECG data from 100.dat
T
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o

o

o o &
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T T
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Fig. 2. Results from intermediate steps of the HOS-RWD algorithm when
applied on a 1600-sample ECG section from the ‘100.dat’ archive of the
MIT/BIH ECG database. The horizontal line corresponds to thresholds.

Matlab 5.3 (The Mathworks, Inc., Natick, MA). The HOS-
RWD was applied on the archives from the MIT/BIH ECG
database (channel 1) presented in Table I. All analyzed files
were thirty minutes long and were sampled with a sampling
frequency of £,=360 Hz. The values for the sliding window
length and the R-wave duration were selected as M=120 and
D=7 samples, respectively.

V. RESULTS AND DISCUSSION

Several examples of analysis results are shown in Figs. 3-
6. In all these figures a long dashed line and a short solid one
mark the locations of R-waves when identified by the
cardiologists and the HOS-RWD, respectively. The R-waves
identified by the cardiologists were considered as the correct
ones and were used for qualitative and quantitative evaluation
of the performance of the HOS-RWD.

Fig. 3 depicts a section from file ‘101.dat’, which clearly
notates a baseline wandering in ECG recordings. From the
comparison of the location of the solid and dashed lines it is
clear that the HOS-RWD overcomes the effect of the baseline
wandering and accurately finds the true locations of R-waves.

ECG data from 101.dat [section (32760:34560) samples]

25¢
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0 200 400 600 800 1000 1200 1400 1600

Number of samples
Fig. 3. ECG data from MIT/BIH ECG database, file ‘101.dat’, section
32760:34560 samples. The vertical dashed lines indicate the
cardiologists’ estimate of the R-wave locations and tic marks (short
solid lines) indicate the HOS-RWD estimate of the R-wave locations.

1800
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Fig. 4 includes a section form file ‘107.dat’ and illustrates
a case of ECG with a deep S-wave in the QRS complex. In
this case there is always the risk of misidentification of the
true location of the R-wave due to the sharp S-wave peak. By
careful examination of the location of the solid and dashed
lines it is clear that the cardiologists’ identification of the R-
wave locations is slightly shifted to the right of the R-wave
peaks. On the contrary, the HOS-RWD’s identification of the
R-wave locations coincides with the location of the R-wave
peaks, independently from the presence of deep S-waves.
Thus, in this case, the R-waves identified by the HOS-RWD,
despite their difference (by one or two samples) from the
ones identified by the cardiologists, where considered as the
correct ones.

ECG data from 107.dat [section (1:1800) samples]

Amplitude (mV)

0 200 400 600 800 1000 1200 1400 1600 1800
Number of samples

Fig. 4. ECG data from MIT/BIH ECG database, file ‘107.dat’, section
1:1800 samples. The vertical dashed lines indicate the cardiologists’
estimate of the R-wave locations and tic marks (short solid lines)
indicate the HOS-RWD estimate of the R-wave locations.

Fig. 5 shows a section from file ‘118.dat’ where two
arrhythmia episodes are present (3 and 6™ QRS complexes)
along with deep S-waves. Similarly to the previous cases,
when comparing the location of the solid and dashed lines it
is clear that the HOS-RWD overcomes the arrhythmia effect
and accurately identifies the true locations of R-waves.

Fig. 6(a) illustrates a noisy ECG recording, taken from
another part of file ‘118.dat’, where apart from the existence
of deep S-waves there is a noise contamination. The noise
presence results in a sequence of further deteriorated QRS
complexes. Despite the simultaneous presence of the
aforementioned factors, the HOS-RWD still clearly identifies
the true location of R-waves, since the location of the dashed
and solid lines are identical in all cases but the 8". With a
close examination of that peak, by employing its zoomed
version shown in Fig. 6(b), it is clear that the cardiologists’
location of the R-wave is not correct, since it coincides with
the location of the deep S-wave. In contrast, the one found
by the HOS-RWD points out the correct position of the R-
wave, despite the presence of both deep S-wave and noise.
The latter is due to the property of skewness and kurtosis to
become equal to zero for Gaussian distributed random
processes, such as additive Gaussian noise [3].

ECG data from 118.dat [section (199080:200880) samples]
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Fig. 5. ECG data from MIT/BIH ECG database, file ‘118.dat’, section
199080:200880 samples. The vertical dashed lines indicate the
cardiologists’ estimate of the R-wave locations and tic marks (short
solid lines) indicate the HOS-RWD estimate of the R-wave locations.

ECG data from 118.dat [section (588180:590340) samples]
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Fig. 6. (a) ECG data from MIT/BIH ECG database, file ‘118.dat’,
section 588180:590340 samples. (b) A zoomed version of the 8" QRS
complex from the ECG data depicted in (a). The vertical dashed lines

indicate the cardiologists’ estimate of the R-wave locations and tic marks

(short solid lines) indicate the HOS-RWD estimate of the R-wave

locations.
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TABLEI
PERFORMANCE OF THE HOS-RWD ALGORITHM WHEN APPLIED ON FILES
(CHANNEL 1) FROM THE MIT/BIH ECG DATABASE

File Record Total number of identified Dr TDr

Name Duration R-waves (%) (%)

(min) Cardiologists ~ HOS-RWD *'std
N Ne

100.dat 30 2272 2272 100

101.dat 30 1863 1863 100

103.dat 30 2084 2084 100 99.91

107.dat 30 2078 2077 99.95 +

118.dat 30 2278 2268 99.56 0.17

201.dat 30 2145 2145 100

#Standard deviation of TDxr

Apart from the qualitative evaluation of the results by
visual examination of Figs. 3-6, a quantitative analysis was
also performed. For the quantitative evaluation of the
efficiency of the HOS-RWD, the following quantitative
evaluators were calculated, defined by Hadjileontiadis and
Panas [5], i.e.,

Rate of Detectability (%):

N,-N
D, = (1 - uj -100, (6)
R
and
Total Performance (%): 7D, = mean(D,), 7

where, N denotes the number of R-waves identified by the
cardiologists and N the number of R-waves identified by the
HOS RWD.

The quantitative evaluators in (6) and (7) describe the
ability of the HOS-RWD to find the correct number of R-
waves at the correct position in the raw data. Analytical
results for the quantitative evaluators for each case are shown
in Table I. These results indicate a very efficient performance
of the HOS-RWD, since it exhibits a total detectability of
almost 100%.

From the above results, it can be seen that the proposed
approach overcomes the limitations seen in previous
methods, described in detail in [1], [2], when using fixed
duration windowing techniques in detecting time-varying
transients. Although a fixed duration sliding window is also
used in the present study, the spectral/temporal variations in
QRS morphology are captured by the properties of the
employed HOS parameters, eliminating any trade off between
the window duration and false and missed detections. In
addition, the elimination of Gaussian noise in the HOS
domain increases the robustness of the HOS-RWD algorithm,
resulting in accurate R-wave detections even in the presence
of noise in ECG recordings.

Regarding the computational cost of the HOS-RWD the
average execution time of the whole procedure was found to
be roughly 5 minutes per 30 minutes ECG data file, since
computation of the HOS parameters, which accounts for the
95% of the overall computational effort, is almost negligible
due to employment of HOS estimation for zero lags only.

VI. CONCLUSION

The HOS-RWD, a higher-order statistics-based R-wave
detector, used in this study proved to be a very efficient tool
for accurate identification of R-wave sequence in ECG
recordings. Quantitative and qualitative analysis of the results
obtained from the analysis of ECGs form the MIT/BIH ECG
database show very reliable and accurate performance. The
proposed method is neither depended on subjective human
judgment nor affected by noise contamination of the ECG
data and could be implemented in a fast and easy way, with
low computational cost, allowing its realization in a real time
context for clinical heart rate screening.
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